Extensions 1→N→G→Q→1 with N=C22 and Q=D58

Direct product G=N×Q with N=C22 and Q=D58
dρLabelID
C23×D29232C2^3xD29464,50

Semidirect products G=N:Q with N=C22 and Q=D58
extensionφ:Q→Aut NdρLabelID
C221D58 = D4×D29φ: D58/D29C2 ⊆ Aut C221164+C2^2:1D58464,39
C222D58 = C2×C29⋊D4φ: D58/C58C2 ⊆ Aut C22232C2^2:2D58464,44

Non-split extensions G=N.Q with N=C22 and Q=D58
extensionφ:Q→Aut NdρLabelID
C22.1D58 = D42D29φ: D58/D29C2 ⊆ Aut C222324-C2^2.1D58464,40
C22.2D58 = D1165C2φ: D58/C58C2 ⊆ Aut C222322C2^2.2D58464,38
C22.3D58 = C4×Dic29central extension (φ=1)464C2^2.3D58464,11
C22.4D58 = C58.D4central extension (φ=1)464C2^2.4D58464,12
C22.5D58 = C4⋊Dic29central extension (φ=1)464C2^2.5D58464,13
C22.6D58 = D58⋊C4central extension (φ=1)232C2^2.6D58464,14
C22.7D58 = C23.D29central extension (φ=1)232C2^2.7D58464,19
C22.8D58 = C2×Dic58central extension (φ=1)464C2^2.8D58464,35
C22.9D58 = C2×C4×D29central extension (φ=1)232C2^2.9D58464,36
C22.10D58 = C2×D116central extension (φ=1)232C2^2.10D58464,37
C22.11D58 = C22×Dic29central extension (φ=1)464C2^2.11D58464,43

׿
×
𝔽